Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 19225, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357550

RESUMO

Differentiated air-liquid interface models are the current standard to assess the mucociliary phenotype using clinically-derived samples in a controlled environment. However, obtaining basal progenitor airway epithelial cells (AEC) from the lungs is invasive and resource-intensive. Hence, we applied a tissue engineering approach to generate organotypic sinonasal AEC (nAEC) epithelia to determine whether they are predictive of bronchial AEC (bAEC) models. Basal progenitor AEC were isolated from healthy participants using a cytological brushing method and differentiated into epithelia on transwells until the mucociliary phenotype was observed. Tissue architecture was assessed using H&E and alcian blue/Verhoeff-Van Gieson staining, immunofluorescence (for cilia via acetylated α-tubulin labelling) and scanning electron microscopy. Differentiation and the formation of tight-junctions were monitored over the culture period (day 1-32) by quantifying trans-epithelial electrical resistance. End point (day 32) tight junction protein expression was assessed using Western blot analysis of ZO-1, Occludin-1 and Claudin-1. Reverse transcription qPCR-array was used to assess immunomodulatory and autophagy-specific transcript profiles. All outcome measures were assessed using R-statistical software. Mucociliary architecture was comparable for nAEC and bAEC-derived cultures, e.g. cell density P = 0.55, epithelial height P = 0.88 and cilia abundance P = 0.41. Trans-epithelial electrical resistance measures were distinct from day 1-14, converged over days 16-32, and were statistically similar over the entire culture period (global P < 0.001). This agreed with end-point (day 32) measures of tight junction protein abundance which were non-significant for each analyte (P > 0.05). Transcript analysis for inflammatory markers demonstrated significant variation between nAEC and bAEC epithelial cultures, and favoured increased abundance in the nAEC model (e.g. TGFß and IL-1ß; P < 0.05). Conversely, the abundance of autophagy-related transcripts were comparable and the range of outcome measures for either model exhibited a considerably more confined uncertainty distribution than those observed for the inflammatory markers. Organotypic air-liquid interface models of nAEC are predictive of outcomes related to barrier function, mucociliary architecture and autophagy gene activity in corresponding bAEC models. However, inflammatory markers exhibited wide variation which may be explained by the sentinel immunological surveillance role of the sinonasal epithelium.


Assuntos
Células Epiteliais , Junções Íntimas , Células Cultivadas , Células Epiteliais/metabolismo , Junções Íntimas/metabolismo , Proteínas de Junções Íntimas/metabolismo , Fenótipo
2.
Sci Rep ; 12(1): 9000, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35637239

RESUMO

Gene vectors to treat cystic fibrosis lung disease should be targeted to the conducting airways, as peripheral lung transduction does not offer therapeutic benefit. Viral transduction efficiency is directly related to the vector residence time. However, delivered fluids such as gene vectors naturally spread to the alveoli during inspiration, and therapeutic particles of any form are rapidly cleared via mucociliary transit. Extending gene vector residence time within the conducting airways is important, but hard to achieve. Gene vector conjugated magnetic particles that can be guided to the conducting airway surfaces could improve regional targeting. Due to the challenges of in-vivo visualisation, the behaviour of such small magnetic particles on the airway surface in the presence of an applied magnetic field is poorly understood. The aim of this study was to use synchrotron imaging to visualise the in-vivo motion of a range of magnetic particles in the trachea of anaesthetised rats to examine the dynamics and patterns of individual and bulk particle behaviour in-vivo. We also then assessed whether lentiviral-magnetic particle delivery in the presence of a magnetic field increases transduction efficiency in the rat trachea. Synchrotron X-ray imaging revealed the behaviour of magnetic particles in stationary and moving magnetic fields, both in-vitro and in-vivo. Particles could not easily be dragged along the live airway surface with the magnet, but during delivery deposition was focussed within the field of view where the magnetic field was the strongest. Transduction efficiency was also improved six-fold when the lentiviral-magnetic particles were delivered in the presence of a magnetic field. Together these results show that lentiviral-magnetic particles and magnetic fields may be a valuable approach for improving gene vector targeting and increasing transduction levels in the conducting airways in-vivo.


Assuntos
Terapia Genética , Síncrotrons , Animais , Magnetismo , Ratos , Traqueia/fisiologia , Raios X
3.
Front Pharmacol ; 12: 682299, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34084147

RESUMO

Cystic fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, resulting in defective ion transport in the airways. Addition of a functioning CFTR gene into affected airway cells has the potential to be an effective treatment for lung disease. The therapeutic efficacy of airway gene transfer can be quantified in animal models by assessing ion transport in the treated nasal epithelium using the nasal potential difference (PD) measurement technique. The nasal PD technique is routinely used in CF mice, however when applied to a recently developed CF rat model those animals did not tolerate the initial nasal PD assessment, therefore the procedure was firstly optimised in rats. This study evaluated the effect of lentiviral (LV)-mediated CFTR airway gene delivery on nasal PD in a CFTR knockout rat model. LV gene vector containing the CFTR gene tagged with a V5 epitope tag (LV-V5-CFTR) was delivered to the nasal epithelium of CF rats, and one week later nasal PD was analysed. This study demonstrated for the first time that LV-V5-CFTR treatment produced a mean correction of 46% towards wild-type chloride response in treated CF rats. Transduced cells were subsequently identifiable using V5 immunohistochemical staining. These findings in the nose validate the use of airway gene therapy for future lung based experiments.

4.
Hum Gene Ther ; 32(15-16): 806-816, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33446042

RESUMO

Gene therapy continues to be a promising contender for the treatment of cystic fibrosis (CF) airway disease. We have previously demonstrated that airway conditioning with lysophosphatidylcholine (LPC) followed by delivery of a HIV-1-based lentiviral (LV) vector functionally corrects the CF transmembrane conductance regulator (CFTR) defect in the nasal airways of CF mice. In our earlier pilot study we showed that our technique can transduce marmoset lungs acutely; this study extends that work to examine gene expression in this nonhuman primate (NHP) 1 month after gene vector treatment. A mixture of three separate HIV-1 vesicular stomatitis virus G (VSV-G)-pseudotyped LV vectors containing the luciferase (Luc), LacZ, and hCFTR transgenes was delivered into the trachea through a miniature bronchoscope. We examined whether a single-dose delivery of LV vector after LPC conditioning could increase levels of transgene expression in the trachea and lungs compared with control (phosphate-buffered saline [PBS]) conditioning. At 1 month, bioluminescence was detected in vivo in the trachea of three of the six animals within the PBS control group, compared with five of the six LPC-treated animals. When examined ex vivo there was weak evidence that LPC improves tracheal Luc expression levels. In the lungs, bioluminescence was detected in vivo in four of the six PBS-treated animals, compared with five of the six LPC-treated animals; however, bioluminescence was present in all lungs when imaged ex vivo. LacZ expression was predominantly observed in the alveolar regions of the lung. hCFTR was detected by qPCR in the lungs of five animals. Basal cells were successfully isolated and expanded from marmoset tracheas, but no LacZ-positive colonies were detected. There was no evidence of an inflammatory response toward the LV vector at 1 month postdelivery, with cytokines remaining at baseline levels. In conclusion, we found weak evidence that LPC conditioning improved gene transduction in the trachea, but not in the marmoset lungs. We also highlight some of the challenges associated with translational lung gene therapy studies in NHPs.


Assuntos
Fibrose Cística , Animais , Callithrix , Fibrose Cística/genética , Fibrose Cística/terapia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Genes Reporter , Terapia Genética , Vetores Genéticos/genética , Humanos , Lentivirus/genética , Pulmão , Camundongos , Projetos Piloto , Transdução Genética
5.
iScience ; 23(12): 101808, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33305175

RESUMO

Explosion of gene therapy approaches for treating rare monogenic and common liver disorders created an urgent need for disease models able to replicate human liver cellular environment. Available models lack 3D liver structure or are unable to survive in long-term culture. We aimed to generate and test a 3D culture system that allows long-term maintenance of human liver cell characteristics. The in vitro whole-organ "Bioreactor grown Artificial Liver Model" (BALM) employs a custom-designed bioreactor for long-term 3D culture of human induced pluripotent stem cells-derived hepatocyte-like cells (hiHEPs) in a mouse decellularized liver scaffold. Adeno-associated viral (AAV) and lentiviral (LV) vectors were introduced by intravascular injection. Substantial AAV and LV transgene expression in the BALM-grown hiHEPs was detected. Measurement of secreted proteins in the media allowed non-invasive monitoring of the system. We demonstrated that humanized whole-organ BALM is a valuable tool to generate pre-clinical data for investigational medicinal products.

6.
Am J Pathol ; 190(5): 977-993, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32084371

RESUMO

Animal models of cystic fibrosis (CF) are essential for investigating disease mechanisms and trialing potential therapeutics. This study generated two CF rat models using clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats-associated protein 9 gene editing. One rat model carries the common human Phe508del (ΔF508) CF transmembrane conductance regulator (CFTR) mutation, whereas the second is a CFTR knockout model. Phenotype was characterized using a range of functional and histologic assessments, including nasal potential difference to measure electrophysiological function in the upper airways, RNAscope in situ hybridization and quantitative PCR to assess CFTR mRNA expression in the lungs, immunohistochemistry to localize CFTR protein in the airways, and histopathologic assessments in a range of tissues. Both rat models revealed a range of CF manifestations, including reduced survival, intestinal obstruction, bioelectric defects in the nasal epithelium, histopathologic changes in the trachea, large intestine, and pancreas, and abnormalities in the development of the male reproductive tract. The CF rat models presented herein will prove useful for longitudinal assessments of pathophysiology and therapeutics.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/deficiência , Fibrose Cística , Modelos Animais de Doenças , Edição de Genes/métodos , Animais , Sistemas CRISPR-Cas , Fibrose Cística/genética , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Camundongos Knockout , Mutação , Fenótipo , Ratos , Ratos Sprague-Dawley
7.
Sci Rep ; 10(1): 2121, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034258

RESUMO

We have previously designed a library of lentiviral vectors to generate somatic-transgenic rodents to monitor signalling pathways in diseased organs using whole-body bioluminescence imaging, in conscious, freely moving rodents. We have now expanded this technology to adeno-associated viral vectors. We first explored bio-distribution by assessing GFP expression after neonatal intravenous delivery of AAV8. We observed widespread gene expression in, central and peripheral nervous system, liver, kidney and skeletal muscle. Next, we selected a constitutive SFFV promoter and NFκB binding sequence for bioluminescence and biosensor evaluation. An intravenous injection of AAV8 containing firefly luciferase and eGFP under transcriptional control of either element resulted in strong and persistent widespread luciferase expression. A single dose of LPS-induced a 10-fold increase in luciferase expression in AAV8-NFκB mice and immunohistochemistry revealed GFP expression in cells of astrocytic and neuronal morphology. Importantly, whole-body bioluminescence persisted up to 240 days. We have validated a novel biosensor technology in an AAV system by using an NFκB response element and revealed its potential to monitor signalling pathway in a non-invasive manner in a model of LPS-induced inflammation. This technology complements existing germline-transgenic models and may be applicable to other rodent disease models.


Assuntos
Dependovirus/genética , Vetores Genéticos/genética , Camundongos Transgênicos/genética , Animais , Técnicas Biossensoriais/métodos , Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Inflamação/genética , Luciferases de Vaga-Lume/genética , Camundongos , NF-kappa B/genética , Regiões Promotoras Genéticas/genética , Transdução de Sinais/genética , Vírus Formadores de Foco no Baço/genética , Transcrição Gênica/genética
8.
Methods Mol Biol ; 2081: 161-175, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31721124

RESUMO

In vivo bioluminescent imaging allows the detection of reporter gene expression in rodents in real time. Here we describe a novel technology whereby we can generate somatotransgenic rodents with the use of a viral vector carrying a luciferase transgene. We are able to achieve long term luciferase expression by a single injection of lentiviral or adeno-associated virus vectors to newborn mice. Further, we describe whole body bioluminescence imaging of conscious mice in a noninvasive manner, thus enforcing the 3R's (replacement, reduction, and refinement) of biomedical animal research.


Assuntos
Expressão Gênica , Genes Reporter , Medições Luminescentes/métodos , Animais , Técnicas Biossensoriais , Ordem dos Genes , Vetores Genéticos/genética , Luciferases de Vaga-Lume/genética , Camundongos , Plasmídeos/genética , Transfecção , Transgenes
9.
Hum Gene Ther ; 31(1-2): 20-46, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31802714

RESUMO

Gene therapy and gene editing technologies are complex and it can be difficult for the public to understand their possible benefits or side effects. However, patient and public support is critical for the successful adoption of any new technology. Given the recent advances in gene therapy and gene editing, their potential clinical benefits, and the significant attention that has been given to the first-known successful attempt at permanent and heritable changes to the human genome, a systematic review was performed to assess beliefs and attitudes toward gene therapy and gene editing for human use, and to highlight the factors that influence acceptability. A systematic search following Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines was undertaken in April 2018 to identify articles examining opinions and attitudes regarding the acceptability of gene therapy and gene editing. Overall, 1,561 records were retrieved from 4 databases (Ovid Medline, PsycINFO, Scopus, and Web of Science). Duplicates were removed, and titles and abstracts independently screened, leaving 86 full-text articles assessed for eligibility. Following full-text review, 33 were included, with 5 articles added after forward/backward searching. An additional three articles were added following an updated search in March 2019 (total n = 41). Findings from the studies were integrated according to common themes: the impact of demographics; risks versus benefits of success; treatment specifics (e.g., medical vs. other reasons; disease severity and status; somatic vs. germ line; and mode of delivery); moral or ethical issues; and changes with time. In general, perceptions were positive, particularly for medical reasons and fatal diseases, but were also influenced by perceived risk. Somatic therapies had higher levels of acceptability than germ line therapies. While available in various forms, limitations exist in the measurement of perceptions of gene therapy and gene editing. Treatment acceptability is essential for future clinical trials, so it is important for scientists and clinicians to be clear about the risks and benefits of these technologies, and how these are communicated to the public, while encouraging education about genetic therapies to a broad range of individuals.


Assuntos
Edição de Genes , Terapia Genética , Aceitação pelo Paciente de Cuidados de Saúde , Opinião Pública , Terapias Complementares , Análise Fatorial , Edição de Genes/ética , Edição de Genes/métodos , Técnicas de Transferência de Genes , Doenças Genéticas Inatas/epidemiologia , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/terapia , Terapia Genética/efeitos adversos , Terapia Genética/ética , Terapia Genética/métodos , Terapia Genética/psicologia , Conhecimentos, Atitudes e Prática em Saúde , Política de Saúde , Humanos , Aceitação pelo Paciente de Cuidados de Saúde/psicologia , Aceitação pelo Paciente de Cuidados de Saúde/estatística & dados numéricos , Melhoria de Qualidade , Medição de Risco , Índice de Gravidade de Doença
10.
Stem Cell Reports ; 10(6): 1766-1781, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29681545

RESUMO

Human neural development begins at embryonic day 19 and marks the beginning of organogenesis. Neural stem cells in the neural tube undergo profound functional, morphological, and metabolic changes during neural specification, coordinated by a combination of exogenous and endogenous cues. The temporal cell signaling activities that mediate this process, during development and in the postnatal brain, are incompletely understood. We have applied gene expression studies and transcription factor-activated reporter lentiviruses during in vitro neural specification of human pluripotent stem cells. We show that nuclear factor κB orchestrates a multi-faceted metabolic program necessary for the maturation of neural progenitor cells during neurogenesis.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Metabolismo Energético , NF-kappa B/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Autofagia , Biomarcadores , Ciclo Celular , Diferenciação Celular/genética , Células Cultivadas , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Imuno-Histoquímica , Modelos Biológicos , Neurogênese/genética , Fenótipo , Transdução de Sinais
11.
Hematol Oncol Clin North Am ; 31(5): 913-926, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28895856

RESUMO

This article focuses on clinical applications of T cells transduced to express recombinant T cell receptor and chimeric antigen receptor constructs directed toward hematological malignancies, and considers newer strategies incorporating gene-editing technologies to address GvHD and host-mediated rejection. Recent data from clinical trials are reviewed, and an overview is provided of current and emerging manufacturing processes; consideration is also given to new developments in the pipeline.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Terapia Genética , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/terapia , Linfócitos T/metabolismo , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Biotecnologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Edição de Genes , Engenharia Genética , Terapia Genética/métodos , Vetores Genéticos/genética , Neoplasias Hematológicas/imunologia , Humanos , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T/genética , Proteínas Recombinantes de Fusão/genética , Linfócitos T/imunologia
12.
Methods Mol Biol ; 1651: 49-64, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28801899

RESUMO

The application of luciferase reporter genes to provide quantitative outputs for the activation of promoters is a well-established technique in molecular biology. Luciferase catalyzes an enzymatic reaction, which in the presence of the substrate luciferin produces photons of light relative to its molar concentration. The luciferase transgene can be genetically inserted at the first intron of a target gene to act as a surrogate for the gene's endogenous expression in cells and transgenic mice. Alternatively, promoter sequences can be excised and/or amplified from genomic sources or constructed de novo and cloned upstream of luciferase in an expression cassette transfected into cells. More recently, the development of synthetic promoters where the essential components of an RNA polymerase binding site and transcriptional start site are fused with various upstream regulatory sequences are being applied to drive reporter gene expression. We have developed a high-throughput cloning strategy to develop lentiviral luciferase reporters driven by transcription factor activated synthetic promoters. Lentiviruses integrate their payload cassette into the host cell genome, thereby facilitating the study of gene expression not only in the transduced cells but also within all subsequent daughter cells. In this manuscript we describe the design, vector construction, lentiviral transduction, and luciferase quantitation of transcription factor activated reporters (TFARs) in vitro and in vivo.


Assuntos
Genes Reporter , Luciferases de Vaga-Lume/análise , Substâncias Luminescentes/análise , Medições Luminescentes/métodos , Regiões Promotoras Genéticas , Ativação Transcricional , Animais , Clonagem Molecular , Vaga-Lumes/enzimologia , Vaga-Lumes/genética , Células HEK293 , Humanos , Lentivirus/genética , Luciferases de Vaga-Lume/genética , Substâncias Luminescentes/metabolismo , Camundongos , Fatores de Transcrição/metabolismo , Transdução Genética/métodos , Transgenes
13.
Sci Rep ; 7(1): 6374, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743959

RESUMO

Luciferase bioimaging in living animals is increasingly being applied in many fields of biomedical research. Rodent imaging usually involves anaesthetising the animal during data capture, however, the biological consequences of anaesthesia have been largely overlooked. We have evaluated luciferase bioimaging in conscious, unrestrained mice after neonatal intracranial or intravascular administration of lentiviral, luciferase reporter cassettes (biosensors); we present real-time analyses from the first day of life to adulthood. Anaesthetics have been shown to exert both neurotoxic and neuroprotective effects during development and in models of brain injury. Mice subjected to bioimaging after neonatal intracranial or intravascular administration of biosensors, targeting the brain and liver retrospectively showed no significant difference in luciferase expression when conscious or unconscious throughout development. We applied conscious bioimaging to the assessment of NFκB and STAT3 transcription factor activated reporters during the earliest stages of development in living, unrestrained pups. Our data showed unique longitudinal activities for NFκB and STAT3 in the brain of conscious mice. Conscious bioimaging was applied to a neonatal mouse model of cerebral palsy (Hypoxic-Ischaemic Encephalopathy). Imaging of NFκB reporter before and after surgery showed a significant increase in luciferase expression, coinciding with secondary energy failure, in lesioned mice compared to controls.


Assuntos
Encéfalo/metabolismo , Paralisia Cerebral/metabolismo , Fígado/metabolismo , Luciferases/metabolismo , Imagem Molecular/métodos , Animais , Animais Recém-Nascidos , Técnicas Biossensoriais/métodos , Paralisia Cerebral/cirurgia , Estado de Consciência , Modelos Animais de Doenças , Vetores Genéticos/administração & dosagem , Injeções Intra-Arteriais , Lentivirus/genética , Luciferases/genética , Camundongos , Camundongos Transgênicos , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Recombinantes/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
14.
Curr Stem Cell Rep ; 3(2): 124-136, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28596938

RESUMO

PURPOSE OF REVIEW: Alternative approaches to conventional drug-based cancer treatments have seen T cell therapies deployed more widely over the last decade. This is largely due to their ability to target and kill specific cell types based on receptor recognition. Introduction of recombinant T cell receptors (TCRs) using viral vectors and HLA-independent T cell therapies using chimeric antigen receptors (CARs) are discussed. This article reviews the tools used for genome editing, with particular emphasis on the applications of site-specific DNA nuclease mediated editing for T cell therapies. RECENT FINDINGS: Genetic engineering of T cells using TCRs and CARs with redirected antigen-targeting specificity has resulted in clinical success of several immunotherapies. In conjunction, the application of genome editing technologies has resulted in the generation of HLA-independent universal T cells for allogeneic transplantation, improved T cell sustainability through knockout of the checkpoint inhibitor, programmed cell death protein-1 (PD-1), and has shown efficacy as an antiviral therapy through direct targeting of viral genomic sequences and entry receptors. SUMMARY: The combined use of engineered antigen-targeting moieties and innovative genome editing technologies have recently shown success in a small number of clinical trials targeting HIV and hematological malignancies and are now being incorporated into existing strategies for other immunotherapies.

15.
Sci Rep ; 7: 41874, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28157201

RESUMO

Molecular mechanisms regulating liver repair following cholestatic injury remain largely unknown. We have combined a mouse model of acute cholestatic liver injury, partial bile duct ligation (pBDL), with a novel longitudinal bioimaging methodology to quantify transcription factor activity during hepatic injury and repair. We administered lentiviral transcription factor activated luciferase/eGFP reporter (TFAR) cassettes to neonatal mice enabling longitudinal TFAR profiling by continued bioimaging throughout the lives of the animals and following pBDL in adulthood. Neonatal intravascular injection of VSV-G pseudotyped lentivirus resulted in almost exclusive transduction of hepatocytes allowing analysis of hepatocyte-specific transcription factor activity. We recorded acute but transient responses with NF-κB and Smad2/3 TFAR whilst our Notch reporter was repressed over the 40 days of evaluation post-pBDL. The bipotent hepatic progenitor cell line, HepaRG, can be directed to differentiate into hepatocytes and biliary epithelia. We found that forced expression of the Notch inhibitor NUMB in HepaRG resulted in enhanced hepatocyte differentiation and proliferation whereas over-expressing the Notch agonist JAG1 resulted in biliary epithelial differentiation. In conclusion, our data demonstrates that hepatocytes rapidly upregulate NF-κB and Smad2/3 activity, whilst repressing Notch signalling. This transcriptional response to cholestatic liver injury likely promotes partial de-differentiation to allow pro-regenerative proliferation of hepatocytes.


Assuntos
Colestase/metabolismo , Hepatócitos/metabolismo , Hepatopatias/metabolismo , Transdução de Sinais , Células 3T3 , Animais , Diferenciação Celular , Proliferação de Células , Colestase/complicações , Colestase/diagnóstico por imagem , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Hepatócitos/citologia , Hepatócitos/fisiologia , Humanos , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Lentivirus/genética , Hepatopatias/diagnóstico por imagem , Hepatopatias/etiologia , Luciferases/genética , Luciferases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo
16.
Am J Physiol Lung Cell Mol Physiol ; 312(2): L258-L267, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27979861

RESUMO

Air-liquid interface (ALI) culture of primary airway epithelial cells enables mucociliary differentiation providing an in vitro model of the human airway, but their proliferative potential is limited. To extend proliferation, these cells were previously transduced with viral oncogenes or mouse Bmi-1 + hTERT, but the resultant cell lines did not undergo mucociliary differentiation. We hypothesized that use of human BMI-1 alone would increase the proliferative potential of bronchial epithelial cells while retaining their mucociliary differentiation potential. Cystic fibrosis (CF) and non-CF bronchial epithelial cells were transduced by lentivirus with BMI-1 and then their morphology, replication kinetics, and karyotype were assessed. When differentiated at ALI, mucin production, ciliary function, and transepithelial electrophysiology were measured. Finally, shRNA knockdown of DNAH5 in BMI-1 cells was used to model primary ciliary dyskinesia (PCD). BMI-1-transduced basal cells showed normal cell morphology, karyotype, and doubling times despite extensive passaging. The cell lines underwent mucociliary differentiation when cultured at ALI with abundant ciliation and production of the gel-forming mucins MUC5AC and MUC5B evident. Cilia displayed a normal beat frequency and 9+2 ultrastructure. Electrophysiological characteristics of BMI-1-transduced cells were similar to those of untransduced cells. shRNA knockdown of DNAH5 in BMI-1 cells produced immotile cilia and absence of DNAH5 in the ciliary axoneme as seen in cells from patients with PCD. BMI-1 delayed senescence in bronchial epithelial cells, increasing their proliferative potential but maintaining mucociliary differentiation at ALI. We have shown these cells are amenable to genetic manipulation and can be used to produce novel disease models for research and dissemination.


Assuntos
Brônquios/citologia , Diferenciação Celular , Cílios/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Muco/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Animais , Dineínas do Axonema/metabolismo , Proliferação de Células , Forma Celular , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Dineínas/metabolismo , Impedância Elétrica , Fenômenos Eletrofisiológicos , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Síndrome de Kartagener/metabolismo , Síndrome de Kartagener/patologia , Síndrome de Kartagener/fisiopatologia , Cariotipagem , Camundongos , Microtúbulos/metabolismo , Modelos Biológicos , Fenótipo , Transdução Genética
17.
Cell Rep ; 14(8): 1883-91, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26904936

RESUMO

The potential of induced pluripotent stem cells (iPSCs) in disease modeling and regenerative medicine is vast, but current methodologies remain inefficient. Understanding the cellular mechanisms underlying iPSC reprogramming, such as the metabolic shift from oxidative to glycolytic energy production, is key to improving its efficiency. We have developed a lentiviral reporter system to assay longitudinal changes in cell signaling and transcription factor activity in living cells throughout iPSC reprogramming of human dermal fibroblasts. We reveal early NF-κB, AP-1, and NRF2 transcription factor activation prior to a temporal peak in hypoxia inducible factor α (HIFα) activity. Mechanistically, we show that an early burst in oxidative phosphorylation and elevated reactive oxygen species generation mediates increased NRF2 activity, which in turn initiates the HIFα-mediated glycolytic shift and may modulate glucose redistribution to the pentose phosphate pathway. Critically, inhibition of NRF2 by KEAP1 overexpression compromises metabolic reprogramming and results in reduced efficiency of iPSC colony formation.


Assuntos
Reprogramação Celular , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Fator 2 Relacionado a NF-E2/genética , Derme/citologia , Derme/metabolismo , Fibroblastos/citologia , Regulação da Expressão Gênica , Genes Reporter , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glicólise/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lentivirus/genética , Lentivirus/metabolismo , Luciferases/genética , Luciferases/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Fosforilação Oxidativa , Via de Pentose Fosfato/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Transdução Genética
18.
Sci Rep ; 5: 11842, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26138224

RESUMO

The application of transcription factor activated luciferase reporter cassettes in vitro is widespread but potential for in vivo application has not yet been realized. Bioluminescence imaging enables non-invasive tracking of gene expression in transfected tissues of living rodents. However the mature immune response limits luciferase expression when delivered in adulthood. We present a novel approach of tissue-targeted delivery of transcription factor activated luciferase reporter lentiviruses to neonatal rodents as an alternative to the existing technology of generating germline transgenic light producing rodents. At this age, neonates acquire immune tolerance to the conditionally responsive luciferase reporter. This simple and transferrable procedure permits surrogate quantitation of transcription factor activity over the lifetime of the animal. We show principal efficacy by temporally quantifying NFκB activity in the brain, liver and lungs of somatotransgenic reporter mice subjected to lipopolysaccharide (LPS)-induced inflammation. This response is ablated in Tlr4(-/-) mice or when co-administered with the anti-inflammatory glucocorticoid analogue dexamethasone. Furthermore, we show the malleability of this technology by quantifying NFκB-mediated luciferase expression in outbred rats. Finally, we use somatotransgenic bioimaging to longitudinally quantify LPS- and ActivinA-induced upregulation of liver specific glucocorticoid receptor and Smad2/3 reporter constructs in somatotransgenic mice, respectively.


Assuntos
Luciferases de Vaga-Lume/genética , Fatores de Transcrição/fisiologia , Ativação Transcricional/imunologia , Animais , Genes Reporter , Vetores Genéticos , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Células HEK293 , Células HeLa , Humanos , Lentivirus/genética , Lipopolissacarídeos/farmacologia , Luciferases de Vaga-Lume/biossíntese , Camundongos , Células NIH 3T3 , Especificidade de Órgãos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética
19.
Am J Physiol Endocrinol Metab ; 303(6): E708-19, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22811466

RESUMO

Abnormal microRNA (miRNA) expression profiles have recently been associated with sporadic pituitary adenomas, suggesting that miRNAs can contribute to tumor formation; miRNAs are small noncoding RNAs that inhibit posttranscriptional expression of target mRNAs by binding to target sequences usually located in the 3'-UTR. In this study, we investigated the role played by miR-107, a miRNA associated with different human cancers, in sporadic pituitary adenomas and its interaction with the pituitary tumor suppressor gene aryl hydrocarbon receptor-interacting protein (AIP). miR-107 expression was evaluated in pituitary adenoma and normal pituitary samples using microRNA screen TLDA (TaqMan Low-Density Array) and RT-qPCR assays. We show that miR-107 expression was significantly upregulated in GH-secreting and nonfunctioning pituitary adenomas. We found that human AIP-3'-UTR is a target of miR-107 since miR-107 inhibited in vitro AIP expression to 53.9 ± 2% of the miRNA control in a luciferase assay and reduced endogenous AIP mRNA expression to 53 ± 22% of the miRNA control in human cells. However, we did not observe a negative correlation between AIP and miR-107 expression in the human tumor samples. Furthermore, we show that miR-107 overexpression inhibited cell proliferation in human neuroblastoma and rat pituitary adenoma cells. In conclusion, miR-107 is overexpressed in pituitary adenomas and may act as a tumor suppressor. We have identified and confirmed AIP as a miR-107 target gene. Expression data in human samples suggest that the expression of AIP and miR-107 could be influenced by a combination of tumorigenic factors as well as compensatory mechanisms stimulated by the tumorigenic process.


Assuntos
Adenoma/metabolismo , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , MicroRNAs/biossíntese , Proteínas de Neoplasias/biossíntese , Neoplasias Hipofisárias/metabolismo , Regulação para Cima , Regiões 3' não Traduzidas , Animais , Linhagem Celular Tumoral , Proliferação de Células , Perfilação da Expressão Gênica , Hormônio do Crescimento Humano/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/biossíntese , Proteínas Mutantes/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neuroblastoma/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Hipófise/metabolismo , Prolactina/metabolismo , RNA Mensageiro/metabolismo , Ratos , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo
20.
Methods Mol Biol ; 891: 273-90, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22648777

RESUMO

Surrogate genetically encoded markers have been utilized in order to analyze gene transfer efficacy, location, and persistence. These marker genes have greatly accelerated the development of gene transfer vectors for the ultimate application of gene therapy using therapeutic genes. They have also been used in many other applications, such as gene marking in order to study developmental cell lineages, to track cell migration, and to study tumor growth and metastasis. This chapter aims to describe the analysis of several commonly used marker genes: green fluorescent protein (GFP), ß-galactosidase, firefly luciferase, human factor IX, and alkaline phosphatase. The merits and disadvantages of each are briefly discussed. In addition a few short examples are provided for continual and endpoint analysis in different disease models including hemophilia, cystic fibrosis, ornithine transcarbamylase deficiency and Gaucher disease.


Assuntos
Biomarcadores/metabolismo , Terapia Genética/métodos , Cuidado Pré-Natal/métodos , Fosfatase Alcalina/metabolismo , Animais , DNA/isolamento & purificação , Ensaios Enzimáticos , Ensaio de Imunoadsorção Enzimática , Fator IX/metabolismo , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imuno-Histoquímica , Luciferases de Vaga-Lume/metabolismo , Camundongos , Reação em Cadeia da Polimerase , Coloração e Rotulagem , Extratos de Tecidos , Imagem Corporal Total , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...